Find the exact value of each expression, if it exists.

53. $\sin^{-1} - 1$

SOLUTION:

Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with a *y*-coordinate of -1.

When
$$t = -\frac{\pi}{2}$$
, sin $t = -1$. Therefore, sin $^{-1} - 1 = -\frac{\pi}{2}$.

ANSWER:

$$\frac{\pi}{2}$$

54. $\cos^{-1}\frac{\sqrt{3}}{2}$

SOLUTION:

Find a point on the unit circle on the interval $[0,\pi]$ with a *x*-coordinate of $\frac{\sqrt{3}}{2}$.

When
$$t = \frac{\pi}{6}$$
, $\cos t = \frac{\sqrt{3}}{2}$. Therefore, $\cos^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{6}$.

ANSWER:

 $\frac{\delta}{6}$

55. $\tan^{-1}\left(-\frac{\sqrt{3}}{3}\right)$

SOLUTION:

 $-\frac{\pi}{6}$

56. arcsin 0

SOLUTION:

Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with a *y*-coordinate of 0.

When t = 0, sin t = 0. Therefore, arcsin 0 = 0.

ANSWER:

0

57. arctan -1

SOLUTION:

Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\frac{y}{x} = -1$ y 0 $\left(\frac{\sqrt{2}}{2}\right)$ When $t = -\frac{\pi}{4}$, $\tan t = \frac{-\frac{\sqrt{2}}{2}}{\sqrt{2}} = -1$. Therefore, $\arctan -1 = -\frac{\pi}{4}$. 2

- ANSWER:
- $-\frac{\pi}{4}$

58. $\arccos \frac{\sqrt{2}}{2}$

SOLUTION:

Find a point on the unit circle on the interval $[0,\pi]$ with a *x*-coordinate of $\frac{\sqrt{2}}{2}$.

 $\frac{\delta}{4}$

59. $\sin^{-1}\left[\sin\left(-\frac{\pi}{3}\right)\right]$

SOLUTION:

The inverse property applies, because $-\frac{\pi}{3}$ lies on the interval [-1, 1]. Therefore, $\sin^{-1}\left(\sin-\frac{\pi}{3}\right) = -\frac{\pi}{3}$.

ANSWER:

 $-\frac{\pi}{3}$

60. $\cos^{-1}[\cos(-3\pi)]$

SOLUTION:

The inverse property applies, because -3π lies on the interval [-1, 1]. Therefore, $\cos^{-1}(\cos - 3\pi) = -3\pi$ or $-\pi$.

ANSWER:

π

Find all solutions for the given triangle, if possible. If no solution exists, write *no solution*. Round side lengths to the nearest tenth and angle measurements to the nearest degree.

61. *a* = 11, *b* = 6, *A* = 22°

SOLUTION:

Draw a diagram of a triangle with the given dimensions.

Notice that *A* is acute and a > b because 11 > 6. Therefore, one solution exists. Apply the Law of Sines to find *B*.

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$
$$\frac{\sin 22^{\circ}}{11} = \frac{\sin B}{6}$$
$$6\sin 22^{\circ} = 11\sin B$$
$$\frac{6\sin 22^{\circ}}{11} = \sin B$$
$$\sin^{-1}\left(\frac{6\sin 22^{\circ}}{11}\right) = B$$
$$11.79^{\circ} \approx B$$

Because two angles are now known, $C \approx 180^{\circ} - (22^{\circ} + 12^{\circ})$ or about 146°. Apply the Law of Sines to find c.

$$\frac{\sin A}{a} = \frac{\sin C}{c}$$
$$\frac{\sin 22^{\circ}}{11} = \frac{\sin 146^{\circ}}{c}$$
$$c \sin 22^{\circ} = 11\sin 146^{\circ}$$
$$c = \frac{11\sin 146^{\circ}}{\sin 22^{\circ}}$$
$$c \approx 16.4$$

Therefore, the remaining measures of $\triangle ABC$ are $B \approx 12^\circ$, $C \approx 146^\circ$, and $c \approx 16.4$.

ANSWER:

 $B = 12^{\circ}, C = 146^{\circ}, c = 16.4$

62.
$$a = 9, b = 10, A = 42^{\circ}$$

SOLUTION:

Draw a diagram of a triangle with the given dimensions.

Notice that *A* is acute and a < b because 9 < 10. Therefore, two solutions may exist. Find *h*.

Because two angles are now known, $C \approx 180^{\circ} - (42^{\circ} + 48^{\circ})$ or about 90°. Apply the Law of Sines to find c.

 $\frac{\sin A}{\sin C}$ a C $\frac{\sin 42^\circ}{2} = \frac{\sin 90^\circ}{2}$ 9 c $c\sin 42^\circ = 9\sin 90^\circ$ $c = \frac{9\sin 90^\circ}{\sin 42^\circ}$ c≈13.5 When, $B = 132^{\circ}$ then $C \approx 180^{\circ} - (42^{\circ} + 132^{\circ})$ or about 6°. Apply the Law of Sines to find c. $\sin A \le \sin C$ a C $\frac{\sin 42^\circ}{9} = \frac{\sin 6^\circ}{c}$ $c\sin 42^\circ = 9\sin 6^\circ$ $c = \frac{9\sin 6^{\circ}}{\sin 42^{\circ}}$ c≈1.4

Therefore, the remaining measures of $\triangle ABC$ are $B \approx 48^{\circ}$, $C \approx 90^{\circ}$, and $c \approx 13.5$ or $B = 132^{\circ}$, $C = 6^{\circ}$, and c = 1.4.

ANSWER:

 $B = 48^{\circ}$, $C = 90^{\circ}$, c = 13.5 and $B = 132^{\circ}$, $C = 6^{\circ}$, c = 1.4

63. $a = 20, b = 10, A = 78^{\circ}$

SOLUTION:

Draw a diagram of a triangle with the given dimensions.

Notice that A is acute and a > b because 20 > 10. Therefore, one solution exists. Apply the Law of Sines to find B.

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$
$$\frac{\sin 78^{\circ}}{20} = \frac{\sin B}{10}$$
$$10\sin 78^{\circ} = 20\sin B$$
$$\frac{10\sin 78^{\circ}}{20} = \sin B$$
$$\sin^{-1}\left(\frac{10\sin 78^{\circ}}{20}\right) = B$$
$$29.27^{\circ} \approx B$$

Because two angles are now known, $C \approx 180^{\circ} - (78^{\circ} + 29^{\circ})$ or about 73°. Apply the Law of Sines to find c.

 $\frac{\sin A}{a} = \frac{\sin C}{c}$ $\frac{\sin 78^{\circ}}{20} = \frac{\sin 73^{\circ}}{c}$ $c \sin 78^{\circ} = 20 \sin 73^{\circ}$ $c = \frac{20 \sin 73^{\circ}}{\sin 78^{\circ}}$ $c \approx 19.5$

Therefore, the remaining measures of $\triangle ABC$ are $B \approx 29^{\circ}$, $C \approx 73^{\circ}$, and $c \approx 19.5$.

ANSWER:

 $B = 29^{\circ}$, $C = 73^{\circ}$, c = 19.5

64. $a = 2, b = 9, A = 88^{\circ}$

SOLUTION:

Notice that *A* is acute and a < b because 2 < 9. Find *h*.

 $h = b \sin A$

= 9 sin 88°

≈ 8.99

Because a < b and a < h, no triangle can be formed with sides a = 2, b = 9, and $A = 88^{\circ}$. Therefore, this problem has no solution.

ANSWER:

no solution

Solve each triangle. Round side lengths to the nearest tenth and angle measures to the nearest degree. 65. a = 13, b = 12, c = 8

SOLUTION:

Use the Law of Cosines to find an angle measure.

$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$

$$13^{2} = 12^{2} + 8^{2} - 2(12)(8) \cos A^{\circ}$$

$$169 = 144 + 64 - 192 \cos A^{\circ}$$

$$-39 = -192 \cos A^{\circ}$$

$$\frac{-39}{-192} = \cos A^{\circ}$$

$$\cos^{-1}\left(\frac{-39}{-192}\right) = A^{\circ}$$

$$A^{\circ} \approx 78.28^{\circ}$$

Use the Law of Sines to find a missing angle measure.

$$\frac{\sin A}{a} = \frac{\sin B}{b}$$
$$\frac{\sin 78^{\circ}}{13} = \frac{\sin B}{12}$$
$$12\sin 78^{\circ} = 13\sin B$$
$$\frac{12\sin 78^{\circ}}{13} = \sin B$$
$$\sin^{-1}\left(\frac{12\sin 78^{\circ}}{13}\right) = B$$
$$64.54^{\circ} \approx B$$
Find the measure of the rema

Find the measure of the remaining angle. $C \approx 180^{\circ} - (78^{\circ} + 65^{\circ})$ $\approx 37^{\circ}$ Therefore, $A \approx 78^{\circ}$, $B \approx 65^{\circ}$, and $C \approx 37^{\circ}$.

ANSWER:

 $A = 78^{\circ}, B = 65^{\circ}, C = 37^{\circ}$

66. $a = 4, b = 5, C = 96^{\circ}$ SOLUTION: Use the Law of Cosines to find the missing side measure. $c^2 = a^2 + b^2 - 2ab\cos A$ $c^2 = 4^2 + 5^2 - 2(4)(5)\cos 96^\circ$ $c^2 = 16 + 25 - 40\cos 96^\circ$ $c^2 = 45.18$ $c \approx 6.72$ Use the Law of Sines to find a missing angle measure. $\frac{\sin A}{=} \frac{\sin C}{\sin C}$ $\frac{\frac{a}{\sin A^{\circ}}}{4} = \frac{\frac{c}{\sin 96^{\circ}}}{\frac{c}{\sin 96^{\circ}}}$ $6.7\sin A^\circ = 4\sin 96^\circ$ $\sin A^\circ = \frac{4\sin 96^\circ}{100}$ 6.7 $A = \sin^{-1}\left(\frac{4\sin 96^\circ}{6.7}\right)$ A ≈ 36.42° Find the measure of the remaining angle. $C \approx 180^{\circ} - (96^{\circ} + 36^{\circ})$ ≈ 48°

Therefore, c = 6.7, $A = 36^{\circ}$, and $B = 48^{\circ}$.

ANSWER:

 $c = 6.7, A = 36^{\circ}, B = 48^{\circ}$

77. GEOMETRY Consider quadrilateral ABCD.

a. Find *C*.**b.** Find the area of *ABCD*.

SOLUTION:

a. Use SAS to find the length of *BD*. $BD^2 = 8^2 + 9^2 - 2(8)(9)\cos 80$ $BD^2 = 64 + 81 - 144\cos 80$ $BD = \sqrt{145 - 144\cos 80}$ *BD* ≈ 10.95 Use SSS to find *C*. $10.95^2 = 10^2 + 11^2 - 2(10)(11)\cos A$ $120 \approx 100 + 121 - 220 \cos A$ $-101 \approx -220 \cos A$ $\cos^{-1}\left(\frac{101}{220}\right) \approx A$ 63° ≈ A **b**. Use SAS to find the area of each triangle formed by *BD*. Area = $\frac{1}{2}(8)(9)\sin 80$ $= 36 \sin 80$ ≈35.45 Area = $\frac{1}{2}(10)(11)\sin 63$

$$= 55 \sin 63$$

$$\approx 49$$

$$35.45 + 49 \approx 84$$

ANSWER:

a. 63 ° **b.** 84 units²