Study Guide and Review - Chapter 4

Find the exact value of each expression, if it exists.
53. $\sin ^{-1}-1$

SOLUTION:

Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with a y-coordinate of -1 .

When $t=-\frac{\pi}{2}, \sin t=-1$. Therefore, $\sin ^{-1}-1=-\frac{\pi}{2}$.
ANSWER:
$-\frac{\pi}{2}$
54. $\cos ^{-1} \frac{\sqrt{3}}{2}$

SOLUTION:
Find a point on the unit circle on the interval $[0, \pi]$ with a x-coordinate of $\frac{\sqrt{3}}{2}$.

When $t=\frac{\pi}{6}, \cos t=\frac{\sqrt{3}}{2}$. Therefore, $\cos ^{-1} \frac{\sqrt{3}}{2}=\frac{\pi}{6}$.
ANSWER:
$\frac{\partial}{6}$

Study Guide and Review - Chapter 4

55. $\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)$

SOLUTION:
Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\frac{y}{x}=-\frac{\sqrt{3}}{3}$

When $t=-\frac{\pi}{6}$, $\tan t=\frac{-\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\frac{\sqrt{3}}{3}$. Therefore, $\tan ^{-1}\left(-\frac{\sqrt{3}}{3}\right)=-\frac{\pi}{6}$.
ANSWER:
$-\frac{\pi}{6}$
56. $\arcsin 0$

SOLUTION:
Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ with a y-coordinate of 0 .

When $t=0, \sin t=0$. Therefore, arcsin $0=0$.
ANSWER:
0

Study Guide and Review - Chapter 4

57. $\arctan -1$

SOLUTION:
Find a point on the unit circle on the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\frac{y}{x}=-1$

When $t=-\frac{\pi}{4}, \tan t=\frac{-\frac{\sqrt{2}}{2}}{\frac{\sqrt{2}}{2}}=-1$. Therefore, $\arctan -1=-\frac{\pi}{4}$.
ANSWER:
$-\frac{\pi}{4}$
58. $\arccos \frac{\sqrt{2}}{2}$

SOLUTION:
Find a point on the unit circle on the interval $[0, \pi]$ with a x-coordinate of $\frac{\sqrt{2}}{2}$.

When $t=\frac{\pi}{4}, \cos t=\frac{\sqrt{2}}{2}$. Therefore, $\arccos \frac{\sqrt{2}}{2}=\frac{\pi}{4}$.
ANSWER:
$\frac{\partial}{4}$

Study Guide and Review - Chapter 4

59. $\sin ^{-1}\left[\sin \left(-\frac{\pi}{3}\right)\right]$

SOLUTION:
The inverse property applies, because $-\frac{\pi}{3}$ lies on the interval $[-1,1]$. Therefore, $\sin ^{-1}\left(\sin -\frac{\pi}{3}\right)=-\frac{\pi}{3}$.
ANSWER:
$-\frac{\pi}{3}$
60. $\cos ^{-1}[\cos (-3 \pi)]$

SOLUTION:
The inverse property applies, because -3π lies on the interval $[-1,1]$. Therefore, $\cos ^{-1}(\cos -3 \pi)=-3 \pi$ or $-\pi$. ANSWER:
π

Study Guide and Review - Chapter 4

Find all solutions for the given triangle, if possible. If no solution exists, write no solution. Round side lengths to the nearest tenth and angle measurements to the nearest degree.
61. $a=11, b=6, A=22^{\circ}$

SOLUTION:
Draw a diagram of a triangle with the given dimensions.

Notice that A is acute and $a>b$ because $11>6$. Therefore, one solution exists. Apply the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 22^{\circ}}{11} & =\frac{\sin B}{6} \\
6 \sin 22^{\circ} & =11 \sin B \\
\frac{6 \sin 22^{\circ}}{11} & =\sin B \\
\sin ^{-1}\left(\frac{6 \sin 22^{\circ}}{11}\right) & =B \\
11.79^{\circ} & \approx B
\end{aligned}
$$

Because two angles are now known, $C \approx 180^{\circ}-\left(22^{\circ}+12^{\circ}\right)$ or about 146°. Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 22^{\circ}}{11} & =\frac{\sin 146^{\circ}}{c} \\
c \sin 22^{\circ} & =11 \sin 146^{\circ} \\
c & =\frac{11 \sin 146^{\circ}}{\sin 22^{\circ}} \\
c & \approx 16.4
\end{aligned}
$$

Therefore, the remaining measures of $\triangle A B C$ are
$B \approx 12^{\circ}, C \approx 146^{\circ}$, and $c \approx 16.4$.
ANSWER:
$B=12^{\circ}, C=146^{\circ}, c=16.4$
62. $a=9, b=10, A=42^{\circ}$

SOLUTION:
Draw a diagram of a triangle with the given dimensions.

Notice that A is acute and $a<b$ because $9<10$. Therefore, two solutions may exist. Find h.

Study Guide and Review - Chapter 4

$$
\begin{aligned}
\sin \theta & =\frac{\text { opposite }}{\text { hypotenuse }} \\
\sin 42 & =\frac{h}{10}
\end{aligned}
$$

$10 \sin 42=h$
$6.69 \approx h$
$9>6.69$, so two solutions exist.
Apply the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 42^{\circ}}{9} & =\frac{\sin B}{10} \\
10 \sin 42^{\circ} & =9 \sin B \\
\frac{10 \sin 42^{\circ}}{9} & =\sin B \\
\sin ^{-1}\left(\frac{10 \sin 42^{\circ}}{9}\right) & =B \\
48^{\circ} & \approx B \text { or } B=132^{\circ}
\end{aligned}
$$

Because two angles are now known, $C \approx 180^{\circ}-\left(42^{\circ}+48^{\circ}\right)$ or about 90°. Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 42^{\circ}}{9} & =\frac{\sin 90^{\circ}}{c} \\
c \sin 42^{\circ} & =9 \sin 90^{\circ} \\
c & =\frac{9 \sin 90^{\circ}}{\sin 42^{\circ}} \\
c & \approx 13.5
\end{aligned}
$$

When, $B=132^{\circ}$ then $C \approx 180^{\circ}-\left(42^{\circ}+132^{\circ}\right)$ or about 6°. Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 42^{\circ}}{9} & =\frac{\sin 6^{\circ}}{c} \\
c \sin 42^{\circ} & =9 \sin 6^{\circ} \\
c & =\frac{9 \sin 6^{\circ}}{\sin 42^{\circ}} \\
c & \approx 1.4
\end{aligned}
$$

Therefore, the remaining measures of $\triangle A B C$ are
$B \approx 48^{\circ}, C \approx 90^{\circ}$, and $c \approx 13.5$ or $B=132^{\circ}, C=6^{\circ}$, and $c=1.4$.
ANSWER:
$B=48^{\circ}, C=90^{\circ}, c=13.5$ and $B=132^{\circ}, C=6^{\circ}, c=1.4$

Study Guide and Review - Chapter 4

63. $a=20, b=10, A=78^{\circ}$

SOLUTION:
Draw a diagram of a triangle with the given dimensions.

Notice that A is acute and $a>b$ because $20>10$. Therefore, one solution exists. Apply the Law of Sines to find B.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 78^{\circ}}{20} & =\frac{\sin B}{10} \\
10 \sin 78^{\circ} & =20 \sin B \\
\frac{10 \sin 78^{\circ}}{20} & =\sin B \\
\sin ^{-1}\left(\frac{10 \sin 78^{\circ}}{20}\right) & =B \\
29.27^{\circ} & \approx B
\end{aligned}
$$

Because two angles are now known, $C \approx 180^{\circ}-\left(78^{\circ}+29^{\circ}\right)$ or about 73°. Apply the Law of Sines to find c.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin 78^{\circ}}{20} & =\frac{\sin 73^{\circ}}{c} \\
c \sin 78^{\circ} & =20 \sin 73^{\circ} \\
c & =\frac{20 \sin 73^{\circ}}{\sin 78^{\circ}} \\
c & \approx 19.5
\end{aligned}
$$

Therefore, the remaining measures of $\triangle A B C$ are
$B \approx 29^{\circ}, C \approx 73^{\circ}$, and $c \approx 19.5$.
ANSWER:
$B=29^{\circ}, C=73^{\circ}, c=19.5$
64. $a=2, b=9, A=88^{\circ}$

SOLUTION:

Notice that A is acute and $a<b$ because $2<9$. Find h.
$h=b \sin A$
$=9 \sin 88^{\circ}$
≈ 8.99
Because $a<b$ and $a<h$, no triangle can be formed with sides $a=2, b=9$, and $A=88^{\circ}$. Therefore, this problem has no solution.

ANSWER:
no solution

Study Guide and Review - Chapter 4

Solve each triangle. Round side lengths to the nearest tenth and angle measures to the nearest degree.
65. $a=13, b=12, c=8$

SOLUTION:
Use the Law of Cosines to find an angle measure.

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
13^{2} & =12^{2}+8^{2}-2(12)(8) \cos A^{\circ} \\
169 & =144+64-192 \cos A^{\circ} \\
-39 & =-192 \cos A^{\circ} \\
\frac{-39}{-192} & =\cos A^{\circ} \\
\cos ^{-1}\left(\frac{-39}{-192}\right) & =A^{\circ} \\
A^{\circ} & \approx 78.28^{\circ}
\end{aligned}
$$

Use the Law of Sines to find a missing angle measure.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin B}{b} \\
\frac{\sin 78^{\circ}}{13} & =\frac{\sin B}{12} \\
12 \sin 78^{\circ} & =13 \sin B \\
\frac{12 \sin 78^{\circ}}{13} & =\sin B \\
\sin ^{-1}\left(\frac{12 \sin 78^{\circ}}{13}\right) & =B \\
64.54^{\circ} & \approx B
\end{aligned}
$$

Find the measure of the remaining angle.

$$
\begin{aligned}
C & \approx 180^{\circ}-\left(78^{\circ}+65^{\circ}\right) \\
& \approx 37^{\circ}
\end{aligned}
$$

Therefore, $A \approx 78^{\circ}, B \approx 65^{\circ}$, and $C \approx 37^{\circ}$.
ANSWER:
$A=78^{\circ}, B=65^{\circ}, C=37^{\circ}$

Study Guide and Review - Chapter 4

66. $a=4, b=5, C=96^{\circ}$

SOLUTION:
Use the Law of Cosines to find the missing side measure.
$c^{2}=a^{2}+b^{2}-2 a b \cos A$
$c^{2}=4^{2}+5^{2}-2(4)(5) \cos 96^{\circ}$
$c^{2}=16+25-40 \cos 96^{\circ}$
$c^{2}=45.18$
$c \approx 6.72$
Use the Law of Sines to find a missing angle measure.

$$
\begin{aligned}
\frac{\sin A}{a} & =\frac{\sin C}{c} \\
\frac{\sin A^{\circ}}{4} & =\frac{\sin 96^{\circ}}{6.7} \\
6.7 \sin A^{\circ} & =4 \sin 96^{\circ} \\
\sin A^{\circ} & =\frac{4 \sin 96^{\circ}}{6.7} \\
A & =\sin ^{-1}\left(\frac{4 \sin 96^{\circ}}{6.7}\right) \\
A & \approx 36.42^{\circ}
\end{aligned}
$$

Find the measure of the remaining angle.

$$
\begin{aligned}
C & \approx 180^{\circ}-\left(96^{\circ}+36^{\circ}\right) \\
& \approx 48^{\circ}
\end{aligned}
$$

Therefore, $c=6.7, A=36^{\circ}$, and $B=48^{\circ}$.
ANSWER:
$c=6.7, A=36^{\circ}, B=48^{\circ}$

Study Guide and Review - Chapter 4

77. GEOMETRY Consider quadrilateral $A B C D$.

a. Find C.
b. Find the area of $A B C D$.

SOLUTION:
a. Use SAS to find the length of $B D$.
$B D^{2}=8^{2}+9^{2}-2(8)(9) \cos 80$
$B D^{2}=64+81-144 \cos 80$
$B D=\sqrt{145-144 \cos 80}$
$B D \approx 10.95$
Use SSS to find C.

$$
\begin{aligned}
10.95^{2} & =10^{2}+11^{2}-2(10)(11) \cos A \\
120 & \approx 100+121-220 \cos A \\
-101 & \approx-220 \cos A \\
\cos ^{-1}\left(\frac{101}{220}\right) & \approx A \\
63^{\circ} & \approx A
\end{aligned}
$$

b. Use SAS to find the area of each triangle formed by $B D$.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(8)(9) \sin 80 \\
& =36 \sin 80 \\
& \approx 35.45 \\
\text { Area } & =\frac{1}{2}(10)(11) \sin 63 \\
& =55 \sin 63 \\
& \approx 49
\end{aligned}
$$

$35.45+49 \approx 84$
ANSWER:
a. 63°
b. 84 units 2

