4-2 Practice Degrees and Radians

Write each decimal degree measure in DMS form and each DMS measure in decimal degree form to the nearest thousandth.

1. 28.955	2. –57.3278
3. 32 28' 10"	4. –73 14' 35"

Write each degree measure in radians as a multiple of π and each radian measure in degrees.

5.
$$25^{\circ}$$
 6. 130°
7. $\frac{3\pi}{4}$ **8.** $\frac{5\pi}{3}$

Identify all angles that are coterminal with the given angle. Then find and draw one positive and one negative angle coterminal with the given angle.

9.
$$43^{\circ}$$
 10. $-\frac{7\pi}{4}$

Find the length of the intercepted arc with the given central angle measure in a circle of the given radius. Round to the nearest tenth.

11. 30°,
$$r = 8$$
 yd **12.** $\frac{7\pi}{6}$, $r = 10$ in

Find the rotation in revolutions per minute given the angular speed and the radius given the linear speed and the rate of rotation.

- **13.** $\omega = \frac{4}{5}\pi \text{ rad/s}$ **14.** V = 32 m/s, 100 rev/min
- 15. On a game show, a contestant spins a wheel. The angular speed of the wheel was $\omega = \frac{\pi}{3}$ radians per second. If the wheel maintained this rate, what would be the rotation in revolutions per minute?

12

Find the area of each sector.

16.
$$\theta = \frac{\pi}{6}, r = 14$$
 in. **17.** $\theta = \frac{7\pi}{4}, r = 4$ m