\qquad
\qquad
\qquad

4-2 Practice
 Degrees and Radians

Write each decimal degree measure in DMS form and each DMS measure in decimal degree form to the nearest thousandth.

1. 28.955
2. -57.3278
3. $322^{\prime \prime} 10^{\prime \prime}$
4. $-7314^{\prime} 35^{\prime \prime}$

Write each degree measure in radians as a multiple of π and each radian measure in degrees.
5. 25°
6. 130°
7. $\frac{3 \pi}{4}$
8. $\frac{5 \pi}{3}$

Identify all angles that are coterminal with the given angle. Then find and draw one positive and one negative angle coterminal with the given angle.
9. 43°
10. $-\frac{7 \pi}{4}$

Find the length of the intercepted arc with the given central angle measure in a circle of the given radius. Round to the nearest tenth.
11. $30^{\circ}, r=8 \mathrm{yd}$
12. $\frac{7 \pi}{6}, r=10 \mathrm{in}$.

Find the rotation in revolutions per minute given the angular speed and the radius given the linear speed and the rate of rotation.
13. $\omega=\frac{4}{5} \pi \mathrm{rad} / \mathrm{s}$
14. $V=32 \mathrm{~m} / \mathrm{s}, 100 \mathrm{rev} / \mathrm{min}$
15. On a game show, a contestant spins a wheel. The angular speed of the wheel was $\omega=\frac{\pi}{3}$ radians per second. If the wheel maintained this rate, what would be the rotation in revolutions per minute?

Find the area of each sector.
16. $\theta=\frac{\pi}{6}, r=14 \mathrm{in}$.
17. $\theta=\frac{7 \pi}{4}, r=4 \mathrm{~m}$

